Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(9): e9731, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38469943

RESUMO

RATIONALE: Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in North America. To investigate the effect of drug-induced liver injury (DILI) on circulating bile acid (BA) profiles, serum from ALF patients and healthy controls were analyzed using a semitargeted high-resolution mass spectrometry approach to measure BAs in their unconjugated and amidated forms and their glucuronide and sulfate conjugates. METHODS: Human serum samples from 20 healthy volunteers and 34 ALF patients were combined with deuterated BAs and extracted, prior to liquid chromatography high-resolution tandem mass spectrometry analysis. A mix of 46 standards helped assign 26 BAs in human serum by accurate mass and retention time matching. Moreover, other isomers of unconjugated and amidated BAs, as well as glucuronide and sulfate conjugates, were assigned by accurate mass filtering. In vitro incubations of standard BAs provided increased information for certain peaks of interest. RESULTS: A total of 275 BA metabolites, with confirmed or putative assignments, were measured in human serum samples. APAP overdose significantly influenced the levels of most BAs, promoting glycine conjugation, and, to a lesser extent, taurine conjugation. When patient outcome was considered, 11 BAs were altered significantly, including multiple sulfated species. Although many of the BAs measured did not have exact structures assigned, several putatively identified BAs of interest were further characterized using in vitro incubations. CONCLUSION: An optimized chromatographic separation tailored to BAs of ranging polarities was combined with accurate mass measurements to investigate the effect that DILI has on their complex profiles and metabolism to a much wider extent than previously possible. The analysis of complex BA profiles enabled in-depth analysis of the BA metabolism perturbations in ALF, including certain metabolites related to patient outcomes.


Assuntos
Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Acetaminofen/efeitos adversos , Glucuronídeos , Espectrometria de Massas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Sulfatos , Fígado
2.
J Pharm Biomed Anal ; 242: 116034, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422671

RESUMO

T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments. To advance our understanding of costimulation in autoimmunity and the inhibition of the costimulatory pathway, it is crucial to have an accurate, precise, and direct method for detecting and quantifying the soluble form of these molecules in body fluids and various biological systems. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying the four costimulatory proteins depending on the signature peptides derived from the soluble isoform of these proteins in multiple reaction monitoring (MRM) mode. The method was validated using the US FDA guidelines. The LOQ was determined as ∼0.5 nM for the four analytes, with quantification extended to 20 nM with a correlation coefficient of R2>0.998. The developed MRM method was used to analyze on-bead digested protein mixtures to establish a competitive assay for the CD28-B7 costimulatory pathway using CTLA4-Ig (Abatacept ™) as an FDA-approved drug for rheumatoid arthritis. The IC50 was determined to be 2.99 and 159.8 nM for sCD80 and sCD86, respectively. A straightforward MRM-based competitive assay will advance the knowledge about the costimulatory role in autoimmunity and the autoimmune therapeutic drug discovery, with the need for broad application on different in vitro and in vivo models to discover new targeted inhibitors.


Assuntos
Doenças Autoimunes , Imunoconjugados , Humanos , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Antígeno B7-2 , Cromatografia Líquida , 60705 , Espectrometria de Massas em Tandem , Antígeno B7-1/metabolismo , Abatacepte
3.
JHEP Rep ; 5(12): 100904, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942225

RESUMO

Background & Aims: Hepatic encephalopathy (HE) is defined as a reversible syndrome and therefore should resolve following liver transplantation (LT). However, neurological complications have been reported in up to 47% of LT recipients, which have been documented to be associated with a history of overt HE pre-LT. We hypothesise that multiple episodes of HE lead to permanent cell injury and exacerbate neurological dysfunction. Our goal was to evaluate the impact of cumulative HE episodes on neurological status and brain integrity in rats with chronic liver disease. Methods: Episodes of overt HE (loss of righting reflex) were induced following injection of ammonium acetate in bile duct ligation (BDL) rats (BDL-Ammonia) every 4 days starting at week 3 post-BDL. Neurobehaviour was evaluated after the last episode. Upon sacrifice, plasma ammonia, systemic oxidative stress, and inflammation markers were assessed. Neuronal markers including neuron-specific nuclear antigen and SMI311 (anti-neurofilament marker) and apoptotic markers (cleaved caspase-3, Bax, and Bcl2) were measured. Total antioxidant capacity, oxidative stress marker (4-hydroxynonenal), and proinflammatory cytokines (tumour necrosis factor-alpha and interleukin-1ß) were measured in brain (hippocampus, frontal cortex, and cerebellum). Proteomic analysis was conducted in the hippocampus. Results: In hippocampus of BDL-Ammonia rats, cleaved caspase-3 and Bax/Bcl2 ratio were significantly increased, whereas NeuN and SMI311 were significantly decreased compared with BDL-Vehicle rats. Higher levels of oxidative stress-induced post-translational modified proteins were found in hippocampus of BDL-Ammonia group which were associated with a lower total antioxidant capacity. Conclusions: Ammonia-induced episodes of overt HE caused neuronal cell injury/death in BDL rats. These results suggest that multiple bouts of HE can be detrimental on the integrity of the brain, translating to irreversibility and hence neurological complications post-LT. Impact and implications: Hepatic encephalopathy (HE) is defined as a reversible neuropsychiatric syndrome resolving following liver transplantation (LT); however, ∼47% of patients demonstrate neurological impairments after LT, which are associated with a previous history of overt HE pre-LT. Our study indicates that multiple episodes of overt HE can cause permanent neuronal damage which may lead to neurological complications after LT. Nevertheless, preventing the occurrence of overt HE episodes is critical for reducing the risk of irreversible neuronal injury in patients with cirrhosis.

4.
Biosens Bioelectron ; 242: 115696, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37816286

RESUMO

Elevating soluble CD80 (sCD80) in human serum is a natural response to autoimmune diseases such as rheumatoid arthritis (RA). The level of sCD80 is associated with RA development and prognosis; therefore, it is potentially used as a biomarker. sCD80 is commonly measured in human serum using immunoassays (e.g., ELISA) with multiple drawbacks, mainly cross-reactivity. Aptamer-based biosensors (aptasensors) development for quantifying and detecting different biological molecules demonstrates applicability in next-generation medicine and biomarker detection. Herein, we selected a specific aptamer for sCD80 by conventional in-vitro selection process (SELEX) with the high-affinity aptamer (Kd = 47.69 nM). A sensitive aptasensor, for the first time, was developed on a screen-printed gold electrode (AuSPE) platform compatible with easy-to-use label-free electrochemical impedance spectroscopy. The immobilization of the aptamer on the gold surface and the presence of sCD80 in a complex with the aptamer were characterized by photo-induced force microscopy, which revealed the uniform assembly of the aptamer monolayer and the distribution of sCD80 on the electrode surface. The developed aptasensor showed a linear performance (0.025-10.0 nM of protein) with a detection limit of 8.0 pM. Furthermore, the aptasensor was tested in a biological matrix, where a linear signal was observed for the increased amount of spiked sCD80 (R2 = 0.9887). The recovery of the spiked amounts ranged from 105 to 125% with coefficient of variation (CV%) <7%, which supported the applicability of this sensor in detecting sCD80 for diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Moléculas de Adesão Celular , Ouro/química , Biomarcadores , Eletrodos
5.
ACS Omega ; 8(34): 31168-31177, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663498

RESUMO

Proteins in tears have an important role in eye health and have been shown as a promising source of disease biomarkers. The goal of this study was to develop a robust, sensitive, and targeted method for profiling tear proteins to examine the variability within a group of healthy volunteers over three days. Inter-individual and inter-day variabilities were examined to contribute to understanding the normal variations in the tear proteome, as well as to establish which proteins may be better candidates as eventual biomarkers of specific diseases. Tear samples collected on Schirmer strips were subjected to bottom-up proteomics, and resulting peptides were analyzed using an optimized targeted method measuring 226 proteins by liquid chromatography-scheduled multiple reaction monitoring. This method was developed using an in-house database of identified proteins from tears compiled from high-resolution data-dependent liquid chromatography tandem mass spectrometry data. The measurement of unique peptide signals can help better understand the dynamics of each of these proteins in tears. Some interesting trends were seen in specific pathways or protein classes, including higher variabilities for those involved in glycolysis, glutathione metabolism, and cytoskeleton proteins and lower variation for those involving the degradation of the extracellular matrix. The overall aim of this study was to contribute to the field of tear proteomics with the development of a novel and targeted method that is highly amenable to the clinical laboratory using high flow LC and commonly used triple quadrupole mass spectrometry while ensuring that protein quantitation was reported based on unique peptides for each protein and robust peak areas with data normalization. These results report on variabilities on over 200 proteins that are robustly detected in tear samples from healthy volunteers with a simple sample preparation procedure.

6.
Environ Pollut ; 333: 121985, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301455

RESUMO

In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.


Assuntos
Atrazina , Clorófitas , Herbicidas , Microalgas , Poluentes Químicos da Água , Humanos , Herbicidas/toxicidade , Simazina/farmacologia , Ecossistema , Poluentes Químicos da Água/toxicidade
7.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902055

RESUMO

Vegetal diamine oxidase (vDAO), an enzyme proposed to relieve symptoms of histaminosis, shows better reactivity with histamine and aliphatic diamines, as well as higher enzymatic activity than DAO of animal origin. The objective of this study was to evaluate the enzyme activity of vDAO from germinating grains from Lathyrus sativus (grass pea) and Pisum sativum (pea), and to verify the presence of a neurotoxin, ß-N-Oxalyl-L-α,ß-diaminopropionic acid (ß-ODAP), in the crude extract obtained from their seedlings. A targeted liquid chromatography-multiple-reaction monitoring mass spectrometry method was developed and used to quantify ß-ODAP in the analysed extracts. An optimized sample preparation procedure, involving protein precipitation with acetonitrile followed by mixed-anion exchange solid-phase extraction, allowed for high sensitivity and good peak shape for ß-ODAP detection. The Lathyrus sativus extract exhibited the highest vDAO enzyme activity of the extracts, followed by the extract from pea cultivar Amarillo from the Crop Development Centre (CDC). The results have also shown that even though ß-ODAP was present in the crude extract from L. sativus, its content was far below the toxicity threshold (300 mg of ß-ODAP/kg body/day). CDC Amarillo showed 5000-fold less ß-ODAP than the undialysed L. sativus extract. It was concluded that both species can be considered as convenient sources of vDAO for potential therapeutic use.


Assuntos
Amina Oxidase (contendo Cobre) , Diamino Aminoácidos , Lathyrus , Cromatografia Líquida/métodos , Amina Oxidase (contendo Cobre)/metabolismo , Espectrometria de Massas em Tandem , Diamino Aminoácidos/análise , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo
8.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768813

RESUMO

Using a semi-targeted approach, we have investigated the effect of acetaminophen on circulating bile acid profiles in rats, including many known bile acids and potential isomeric structures, as well as glucuronide and sulfate conjugates. The chromatographic separation was based on an optimized reverse-phase method exhibiting excellent resolution for a complex mix of bile acids using a solid-core C18 column, coupled to a high-resolution quadrupole time-of-flight system. The semi-targeted workflow consisted of first assigning all peaks detectable in samples from 46 known bile acids contained in a standard mix, as well as additional peaks for other bile acid isomers. The presence of glucuronide and sulfate conjugates was also examined based on their elemental formulae and detectable peaks with matching exact masses were added to the list of features for statistical analysis. In this study, rats were administered acetaminophen at four different doses, from 75 to 600 mg/kg, with the highest dose being a good model of drug-induced liver injury. Statistically significant changes were found by comparing bile acid profiles between dosing levels. Some tentatively assigned conjugates were further elucidated using in vitro metabolism incubations with rat liver fractions and standard bile acids. Overall, 13 identified bile acids, 23 tentatively assigned bile acid isomers, and 9 sulfate conjugates were found to increase significantly at the highest acetaminophen dose, and thus could be linked to drug-induced liver injury.


Assuntos
Ácidos e Sais Biliares , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Acetaminofen/efeitos adversos , Glucuronídeos , Espectrometria de Massas/métodos
10.
Aquat Toxicol ; 254: 106323, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435012

RESUMO

Polar ecosystems play an important role in global primary production. Microalgae have adaptations that enable them to live under low temperature environments where irradiance and day length change drastically. Their adaptations, leading to different ecophysiological characteristics relative to temperate species, could also alter their sensitivity to pollutants such as pesticides. This study's objective was to understand how different ecophysiological characteristics influence the response of Arctic phytoplankton to pesticides in relation to the responses of their temperate counterparts. Ecophysiological endpoints were related to growth, cell biovolume, pigment content, photosynthetic activity, photoprotective mechanisms (NPQ, antioxidant enzyme activities), and reactive oxygen species (ROS) content. The Arctic species Micromonas polaris was more resistant to atrazine and simazine than its temperate counterpart Micromonas bravo. However, the other Arctic species Chaetoceros neogracilis was more sensitive to these herbicides than its temperate counterpart Chaetoceros neogracile. With respect to two other pesticide toxicity, both temperate microalgae were more sensitive to trifluralin, while Arctic microalgae were more sensitive to chlorpyrifos (insecticide). All differences could be ascribed to differences in the eco-physiological features of the two microalgal groups, which can be explained by cell size, pigment content, ROS content and protective mechanisms (NPQ and antioxidant enzymes).


Assuntos
Clorófitas , Microalgas , Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/análise , Espécies Reativas de Oxigênio , Antioxidantes , Ecossistema , Poluentes Químicos da Água/toxicidade
11.
Metabolites ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36295833

RESUMO

Biotransformation reactions that xenobiotics undergo during their metabolism are crucial for their proper excretion from the body, but can also be a source of toxicity, especially in the case of reactive metabolite formation. Unstable, reactive metabolites are capable of covalent binding to proteins, and have often been linked to liver damage and other undesired side effects. A common technique to assess the formation of reactive metabolites employs trapping them in vitro with glutathione and characterizing the resulting adducts by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Some endogenous compounds, however, can interfere with xenobiotic metabolites of interest, making the analysis more difficult. This study demonstrates the usefulness of isotope-labeled compounds to detect and elucidate the structures of both stable metabolites and trapped adducts of three estrogen analogs using an untargeted LC-MS/MS workflow. The metabolism of estradiol, estrone and ethinyl estradiol was investigated. Unlabeled and deuterated versions of these three compounds were incubated with human or rat liver microsomes in the presence of two different trapping agents, namely glutathione and N-acetylcysteine. The detection of closely eluting deuterated peaks allowed us to confirm the formation of several known metabolites, as well as many previously uncharacterized ones. The structure of each adduct was elucidated by the detailed analysis of high-resolution MS/MS spectra for elucidating fragmentation pathways with accurate mass measurements. The use of isotopic labeling was crucial in helping confirm many metabolites and adduct structures, as well as removing endogenous interferences.

12.
Antioxidants (Basel) ; 11(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36139709

RESUMO

Synthetic gallic acid derivatives are employed as additives in food, personal care products, and pharmaceutical formulations. Despite their widespread use, little is known about their human exposure, health effects, and metabolism. Green tea catechins are natural antioxidants, known for their health-promoting properties, and are also employed as food additives or in personal care products. The objective of this study was to establish metabolic pathways involved in the biotransformation of green tea catechins and synthetic gallate esters. Liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) was used to elucidate oxidative and methylated metabolites, in addition to glutathione conjugates, formed in vitro using human liver microsomal incubations. The developed method was applied to 14 different parent compounds with a wide range of polarities, for the structural elucidation of many known and novel metabolites. These results serve to inform about the wide variety of possible metabolites formed upon exposure to these compounds.

13.
Can J Physiol Pharmacol ; 100(11): 1065-1076, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985040

RESUMO

Despite numerous therapeutic options, multidrug resistance (MDR) remains an obstacle to successful breast cancer therapy. Jadomycin B, a natural product derived from Streptomyces venezuelae ISP5230, maintains cytotoxicity in MDR human breast cancer cells. Our objectives were to evaluate the pharmacokinetics, toxicity, anti-tumoral, and anti-metastatic effects of jadomycin B in zebrafish larvae and mice. In a zebrafish larval xenograft model, jadomycin B significantly reduced the proliferation of human MDA-MB-231 cells at or below its maximum tolerated dose (40 µm). In female Balb/C mice, a single intraperitoneal dose (6 mg/kg) was rapidly absorbed with a maximum serum concentration of 3.4 ± 0.27 µm. Jadomycin B concentrations declined biphasically with an elimination half-life of 1.7 ± 0.058 h. In the 4T1 mouse mammary carcinoma model, jadomycin B (12 mg/kg every 12 h from day 6 to 15 after tumor cell injection) decreased primary tumor volume compared to vehicle control. Jadomycin B-treated mice did not exhibit weight loss, nor significant increases in biomarkers of impaired hepatic (alanine aminotransferase) and renal (creatinine) function. In conclusion, jadomycin B demonstrated a good safety profile and provided partial anti-tumoral effects, warranting further dose-escalation safety and efficacy studies in MDR breast cancer models.


Assuntos
Neoplasias da Mama , Peixe-Zebra , Humanos , Feminino , Animais , Camundongos , Projetos Piloto , Xenoenxertos
14.
Eur J Pharmacol ; 929: 175090, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780824

RESUMO

Dyskinesia remains an unmet need in Parkinson's disease (PD). We have previously demonstrated that glycine transporter 1 (GlyT1) inhibition with ALX-5407 reduces dyskinesia and slightly improves parkinsonism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Here, we sought to determine the effect of bitopertin, a clinically-tested GlyT1 inhibitor, on parkinsonism and dyskinesia in the 6-hydroxydopamine (6-OHDA)-lesioned rat. To do so, we assessed the effect of bitopertin on parkinsonism as monotherapy and as adjunct to a low dose of L-3,4-dihydroxyphenylalanine (L-DOPA). We then assessed the efficacy of bitopertin on dyskinesia in the context of acute challenge and chronic administration studies. Lastly, we evaluated whether de novo treatment with bitopertin, started concurrently with L-DOPA, would diminish the development of dyskinesia. We discovered that bitopertin (0.3 mg/kg), when administered alone, reduced the severity of parkinsonism by 35% (P < 0.01). As adjunct to a low dose of L-DOPA, bitopertin (3 mg/kg) enhanced the anti-parkinsonian effect of L-DOPA by 36% (P < 0.05). Moreover, the acute addition of bitopertin (0.03 mg/kg) to L-DOPA reduced dyskinesia by 27% (P < 0.001), and there was no tolerance to the anti-dyskinetic benefit after 4 weeks of daily administration. Lastly, bitopertin (0.03 mg/kg) started concurrently with L-DOPA, also attenuated the development of dyskinesia, by 33% (P < 0.01), when compared to L-DOPA alone. Our results suggest that GlyT1 inhibition may simultaneously reduce parkinsonism and L-DOPA-induced dyskinesia and represents a novel approach to treat, possibly prevent, motor complications in PD.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Proteínas da Membrana Plasmática de Transporte de Glicina , Levodopa/farmacologia , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Piperazinas , Ratos , Sulfonas
15.
Metallomics ; 14(6)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35524697

RESUMO

Copper (Cu) is a redox-active transition element critical to various metabolic processes. These functions are accomplished in tandem with Cu-binding ligands, mainly proteins. The main goal of this work was to understand the mechanisms that govern the intracellular fate of Cu in the freshwater green alga, Chlamydomonas reinhardtii, and more specifically to understand the mechanisms underlying Cu detoxification by algal cells in low-Fe conditions. We show that Cu accumulation was up to 51-fold greater for algae exposed to Cu in low-Fe medium as compared to the replete-Fe growth medium. Using the stable isotope 65Cu as a tracer, we studied the subcellular distribution of Cu within the various cell compartments of C. reinhardtii. These data were coupled with metallomic and proteomic approaches to identify potential Cu-binding ligands in the heat-stable proteins and peptides fraction of the cytosol. Cu was mostly found in the organelles (78%), and in the heat-stable proteins and peptides (21%) fractions. The organelle fraction appeared to also be the main target compartment of Cu accumulation in Fe-depleted cells. As Fe levels in the medium were shown to influence Cu homeostasis, we found that C. reinhardtii can cope with this additional stress by utilizing different Cu-binding ligands. Indeed, in addition to expected Cu-binding ligands such as glutathione and phytochelatins, 25 proteins were detected that may also play a role in the Cu-detoxification processes in C. reinhardtii. Our results shed new light on the coping mechanisms of C. reinhardtii when exposed to environmental conditions that induce high rates of Cu accumulation.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Isótopos/metabolismo , Ligantes , Proteômica
16.
Heliyon ; 8(12): e12380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590505

RESUMO

The causative agent of Chagas disease (CD), Trypanosoma cruzi, claims thousands of lives each year. Current diagnostic tools are insufficient to ensure parasitological detection in chronically infected patients has been achieved. A host-derived metabolic signature able to distinguish CD patients from uninfected individuals and assess antiparasitic treatment efficiency is introduced. Serum samples were collected from chronic CD patients, prior to and three years after treatment, and subjected to untargeted metabolomics analysis against demographically matched CD-negative controls. Five metabolites were confirmed by high-resolution tandem mass spectrometry. Several database matches for sex steroids were significantly altered in CD patients. A murine experiment corroborated sex steroid perturbation in T. cruzi-infected mice, particularly in male animals. Proteomics analysis also found increased steroidogenesis in the testes of infected mice. Metabolic alterations identified in this study shed light on the pathogenesis and provide the basis for developing novel assays for the diagnosis and screening of CD patients.

17.
Front Chem ; 9: 736788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490218

RESUMO

Acetaminophen (APAP) is a mild analgesic and antipyretic used commonly worldwide. Although considered a safe and effective over-the-counter medication, it is also the leading cause of drug-induced acute liver failure. Its hepatotoxicity has been linked to the covalent binding of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), to proteins. The aim of this study was to identify APAP-protein targets in both rat and mouse liver, and to compare the results from both species, using bottom-up proteomics with data-dependent high resolution mass spectrometry and targeted multiple reaction monitoring (MRM) experiments. Livers from rats and mice, treated with APAP, were homogenized and digested by trypsin. Digests were then fractionated by mixed-mode solid-phase extraction prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Targeted LC-MRM assays were optimized based on high-resolution MS/MS data from information-dependent acquisition (IDA) using control liver homogenates treated with a custom alkylating reagent yielding an isomeric modification to APAP on cysteine residues, to build a modified peptide database. A list of putative in vivo targets of APAP were screened from data-dependent high-resolution MS/MS analyses of liver digests, previous in vitro studies, as well as selected proteins from the target protein database (TPDB), an online resource compiling previous reports of APAP targets. Multiple protein targets in each species were found, while confirming modification sites. Several proteins were modified in both species, including ATP-citrate synthase, betaine-homocysteine S-methyltransferase 1, cytochrome P450 2C6/29, mitochondrial glutamine amidotransferase-like protein/ES1 protein homolog, glutamine synthetase, microsomal glutathione S-transferase 1, mitochondrial-processing peptidase, methanethiol oxidase, protein/nucleic acid deglycase DJ-1, triosephosphate isomerase and thioredoxin. The targeted method afforded better reproducibility for analysing these low-abundant modified peptides in highly complex samples compared to traditional data-dependent experiments.

18.
Biochemistry ; 60(29): 2285-2299, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34264642

RESUMO

The accumulation of insoluble amyloids in the pancreatic islets is a pathological hallmark of type II diabetes and correlates closely with the loss of ß-cell mass. The predominant component of these amyloid deposits is the islet amyloid polypeptide (IAPP). The factors contributing to the conversion of IAPP from a monomeric bioactive peptide hormone into insoluble amyloid fibrils remain partially elusive. In this study, we investigated the effect of the oxidative non-enzymatic post-translational modification induced by the reactive metabolite 4-hydroxynonenal (HNE) on IAPP aggregation and cytotoxicity. Incubation of IAPP with exogenous HNE accelerated its self-assembly into ß-sheet fibrils and led to the formation of a Michael adduct on the His-18 side chain. To model this covalent modification, the imidazole N(π) position of histidine was alkylated using a close analogue of HNE, the octyl chain. IAPP lipidated at His-18 showed a hastened random coil-to-ß-sheet conformational conversion into fibrillar assemblies with a distinct morphology, a low level of binding to thioflavin T, and a high surface hydrophobicity. Introducing an octyl chain on His-18 enhanced the ability of the peptide to perturb synthetic lipid vesicles, to permeabilize the plasma membrane, and to induce the death of pancreatic ß-cells. Alkylated IAPP triggered the self-assembly of unmodified IAPP by prompting primary nucleation and increased its capacity to perturb the plasma membrane, indicating that only a small proportion of the modified peptide is necessary to shift the balance toward the formation of proteotoxic species. This study underlines the importance of studying IAPP post-translational modifications induced by oxidative metabolites in the context of pancreatic amyloids.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lipídeos de Membrana/metabolismo , Alquilação , Amiloide/metabolismo , Animais , Linhagem Celular , Oxirredução , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica em Folha beta , Processamento de Proteína Pós-Traducional , Ratos
19.
Nutr Neurosci ; 24(9): 660-673, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31595838

RESUMO

Phenolic compounds from olive oil (ArOH-EVOO) are recognized for their antioxidant and neuroprotective capacities, but are often studied individually or through a natural extract. As their reactivity towards reactive oxygen species (ROS) depends on their structure and could implicate different complementary mechanisms, we hypothesized that their effects could be enhanced by an innovative combination of some of the most abundant ArOH-EVOO. Using electrochemical methods, we have compared their reactivity towards hydrogen peroxide and the superoxide anion radical. The mixture containing oleuropein, p-coumaric acid and tyrosol (Mix1), was more efficient than the mixture containing hydroxytyrosol, the oleuropein catechol moiety, and the two monophenols (Mix2). On neuronal SK-N-SH cells challenged with H2O2 or Paraquat, low concentrations (0.1 and 1 µM) of the Mix1 improved neuronal survival. These neuroprotective effects were supported by a decrease in intracellular ROS, in the protein carbonyl levels and the prevention of the redox-sensitive factors Nrf2 and NF-κB activation. These intracellular effects were supported by the demonstration of the internalization of these ArOH-EVOO into neuronal cells, evidenced by LC-HRMS. Our results demonstrated that this combination of ArOH-EVOO could be more efficient than individual ArOH usually studied for their neuroprotective properties. These data suggest that the Mix1 could delay neuronal death in neurodegenerative diseases related to oxidative stress such as Alzheimer's (AD) and Parkinson's diseases (PD).


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Azeite de Oliva/química , Fenóis/química , Fenóis/farmacologia , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Sinergismo Farmacológico , Eletroquímica , Sequestradores de Radicais Livres , Peróxido de Hidrogênio/antagonistas & inibidores , Glucosídeos Iridoides/química , Glucosídeos Iridoides/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores , Fenóis/farmacocinética , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/química , Álcool Feniletílico/farmacologia , Soluções , Superóxidos/antagonistas & inibidores
20.
Proteomics ; 21(2): e2000014, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910497

RESUMO

Mussel byssus represents a fascinating class of biological materials with a unique capacity to adhere onto virtually any solid surface. Proteins expressed in byssus, the byssal-producing organ (foot) as well as mantle tissue from Mytilus edulis or Mytilus californianus are analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The mantle is used as a control tissue to pinpoint unique proteins from the foot samples potentially involved in byssogenesis. This work represents an important step towards identifying biologically important proteins expressed in foot, as well as extending knowledge on the byssus proteome. Considering the minimal proteomics data of the studied species, this data also contributes to a more complete description of M. edulis and M. californianus proteomes.


Assuntos
Mytilus , Animais , Cromatografia Líquida , Proteoma , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...